Part Number Hot Search : 
STA333BW AR3510 FL476 TC148 LTC152 SDU9435A BD5251G F20315
Product Description
Full Text Search
 

To Download TLWY8900 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  tlwb / bg / r / tg / y8900 document number 83212 rev. 1.6, 14-jan-05 vishay semiconductors www.vishay.com 1 19232 e3 pb pb-free telux? description the telux? series is a clear, non diffused led for applications where supreme luminous flux is required. it is designed in an industry standard 7.62 mm square package utilizing highly de veloped (as) allngap technology. the supreme heat dissipation of telux? allows applications at high ambient temperatures. all packing units are binned for luminous flux, forward voltage and color to achieve the most homogenous light appearance in application. sae and ece color requir ements for automobile application are available for color red. esd resistivity 2 kv (hbm) according to mil std 883d, method 3015.7. features  utilizing one of the world?s brightest (as) allngap technologies  high luminous flux  supreme heat dissipation: r thjp is 90 k/w  high operating temperature: t amb = - 40 to + 110 c  meets sae and ece colo r requiremen ts for the automobile industry for color red  packed in tubes for automatic insertion  luminous flux, forward voltage and color catego- rized for each tube  small mechanical tolerances allow precise usage of external reflectors or lightguides  lead-free device applications exterior lighting dashboard illumination tail-, stop - and turn signals of motor vehicles replaces small incandescent lamps traffic signals and signs parts table part color, luminous intensity angle of half intensity ( ? ) technology tlwr8900 red, v = 3000 mlm (typ.) 45 allngap on gaas TLWY8900 yellow, v = 3000 mlm (typ.) 45 allngap on gaas tlwtg8900 true green, v = 3000 mlm (typ.) 45 ingan on sic tlwbg8900 blue green, v = 1300 mlm (typ.) 45 ingan on sic tlwb8900 blue, v = 650 mlm (typ.) 45 ingan on sic
www.vishay.com 2 document number 83212 rev. 1.6, 14-jan-05 tlwb / bg / r / tg / y8900 vishay semiconductors absolute maximum ratings t amb = 25 c, unless otherwise specified tlwr8900 , TLWY8900 tlwtg8900 , tlwbg8900 , tlwb8900 optical and electrical characteristics t amb = 25 c, unless otherwise specified red tlwr8900 parameter test condition symbol value unit reverse voltage i r = 100 av r 10 v dc forward current t amb 85 c i f 70 ma surge forward current t p 10 si fsm 1a power dissipation t amb 85 c p v 187 mw junction temperature t j 125 c operating temperature range t amb - 40 to + 110 c storage temperature range t stg - 55 to + 110 c soldering temperature t 5 s, 1.5 mm from body preheat temperature 100 c/ 30 sec. t sd 260 c thermal resistance junction/ ambient with cathode heatsink of 70 mm 2 r thja 200 k/w parameter test condition symbol value unit reverse voltage i r = 10 av r 5v dc forward current t amb 50 c i f 50 ma surge forward current t p 10 si fsm 0.1 a power dissipation t amb 50 c p v 230 mw junction temperature t j 100 c operating temperature range t amb - 40 to + 100 c storage temperature range t stg - 55 to + 100 c soldering temperature t 5 s, 1.5 mm from body preheat temperature 100 c/ 30 sec. t sd 260 c thermal resistance junction/ ambient with cathode heatsink of 70 mm 2 r thja 200 k/w thermal resistance junction/pin r thjp 90 k/w parameter test condition symbol min ty p. max unit total flux i f = 70 ma, r thja = 200 k/w v 2000 3000 mlm luminous intensity/total flux i f = 70 ma, r thja = 200 k/w i v / v 0.7 mcd/mlm dominant wavelength i f = 70 ma, r thja = 200 k/w d 611 615 634 nm peak wavelength i f = 70 ma, r thja = 200 k/w p 624 nm angle of half intensity i f = 70 ma, r thja = 200 k/w ? 45 deg total included angle 90 % of total flux captured ? 0.9v 75 deg forward voltage i f = 70 ma, r thja = 200 k/w v f 2.0 2.2 2.7 v reverse voltage i r = 10 av r 10 20 v junction capacitance v r = 0, f = 1 mhz c j 17 pf
tlwb / bg / r / tg / y8900 document number 83212 rev. 1.6, 14-jan-05 vishay semiconductors www.vishay.com 3 yellow TLWY8900 true green tlwtg8900 blue green tlwbg8900 parameter test condition symbol min ty p. max unit total flux i f = 70 ma, r thja = 200 k/w v 2000 3000 mlm luminous intensity/total flux i f = 70 ma, r thja = 200 k/w i v / v 0.7 mcd/mlm dominant wavelength i f = 70 ma, r thja = 200 k/w d 585 590 597 nm peak wavelength i f = 70 ma, r thja = 200 k/w p 594 nm angle of half intensity i f = 70 ma, r thja = 200 k/w ? 45 deg total included angle 90 % of total flux captured ? 0.9v 75 deg forward voltage i f = 70 ma, r thja = 200 k/w v f 1.83 2.1 2.7 v reverse voltage i r = 10 av r 10 15 v junction capacitance v r = 0, f = 1 mhz c j 17 pf parameter test condition symbol min ty p. max unit total flux i f = 50 ma, r thja = 200 k/w v 1000 2000 mlm luminous intensity/total flux i f = 50 ma, r thja = 200 k/w i v / v 0.7 mcd/mlm dominant wavelength i f = 50 ma, r thja = 200 k/w d 509 523 535 nm peak wavelength i f = 50 ma, r thja = 200 k/w p 518 nm angle of half intensity i f = 50 ma, r thja = 200 k/w ? 45 deg total included angle 90 % of total flux captured ? 100 deg forward voltage i f = 50 ma, r thja = 200 k/w v f 4.4 5.0 v reverse voltage i r = 10 av r 510 v junction capacitance v r = 0, f = 1 mhz c j 50 pf temperature coefficient of dom i f = 30 ma tc dom 0.02 nm/k parameter test condition symbol min ty p. max unit total flux i f = 50 ma, r thja = 200 k/w v 630 1300 mlm luminous intensity/total flux i f = 50 ma, r thja = 200 k/w i v / v 0.7 mcd/mlm dominant wavelength i f = 50 ma, r thja = 200 k/w d 492 505 510 nm peak wavelength i f = 50 ma, r thja = 200 k/w p 503 nm angle of half intensity i f = 50 ma, r thja = 200 k/w ? 45 deg total included angle 90 % of total flux captured ? 100 deg forward voltage i f = 50 ma, r thja = 200 k/w v f 4.4 5.0 v reverse voltage i r = 10 av r 510 v junction capacitance v r = 0, f = 1 mhz c j 50 pf temperature coefficient of dom i f = 30 ma tc dom 0.02 nm/k
www.vishay.com 4 document number 83212 rev. 1.6, 14-jan-05 tlwb / bg / r / tg / y8900 vishay semiconductors blue tlwb8900 typical characteri stics (tamb = 25 c unless otherwise specified) parameter test condition symbol min ty p. max unit total flux i f = 50 ma, r thja = 200 k/w v 320 650 mlm luminous intensity/total flux i f = 50 ma, r thja = 200 k/w i v / v 0.7 mcd/mlm dominant wavelength i f = 50 ma, r thja = 200 k/w d 462 470 476 nm peak wavelength i f = 50 ma, r thja = 200 k/w p 460 nm angle of half intensity i f = 50 ma, r thja = 200 k/w ? 45 deg total included angle 90 % of total flux captured ? 100 deg forward voltage i f = 50 ma, r thja = 200 k/w v f 4.4 5.0 v reverse voltage i r = 10 av r 510 v junction capacitance v r = 0, f = 1 mhz c j 50 pf temperature coefficient of dom i f = 30 ma tc dom 0.03 nm/k figure 1. power dissipation vs. ambient temperature figure 2. forward current vs. ambient temperature 0 25 50 75 100 125 150 175 200 0 20406080100120 t amb ? ambient temperature ( c) 18018 p - power dissipation ( mw ) v r thja = 200 k/w red, yellow 0 20 40 60 80 100 0 20406080100120 t amb - ambient t emperature ( c) 18019 i - forward current ( ma ) f r thja = 200 k/w red, yellow figure 3.powerdissipationvs.am bienttemperatureforinga figure 4.forwardcurrentvs.ambienttemperatureforinga 0 25 50 75 100 125 150 175 200 225 250 t amb - ambient temperature ( c) 16066 p - power dissipation ( mw ) v r thja = 200 k/w 080 20 40 60 100 120 0 10 20 30 40 50 60 16067 i - forward current ( ma ) f t amb - ambient temperature ( c) 080 20 40 60 100 120 r thja = 200 k/w
tlwb / bg / r / tg / y8900 document number 83212 rev. 1.6, 14-jan-05 vishay semiconductors www.vishay.com 5 figure 5. forward current vs. pulse length figure 6. rel. luminous intensity vs. angular displacement figure 7. percentage total luminous flux vs. total included angle for 90 emission angle 0.01 0.1 1 10 1 10 100 1000 10000 t p C pulse length ( ms ) 100 18020 i C forward current ( ma ) f t p /t = 0.01 0.02 0.05 0.1 0.2 1 0.5 red, yellow t amb 85 c 16200 0.4 0.2 0 0.2 0.4 0.6 0.6 0.9 0 30 10 20 40 50 60 70 80 1.0 0.8 0.7 angular displacement i - relative luminous intensity v rel 0 10 20 30 40 50 60 70 80 90 100 0 25 50 75 100 125 total included angle (degrees) 16201 % total luminous flux figure 8.thermalresistancejunctionambientvs.cathode padsize figure 9.forwardcurrentvs.forwardvoltage figure 10.rel.luminousfluxvs.ambienttemperature r in k/w 160 170 180 190 200 210 220 230 0 50 100 150 200 250 300 cathode padsize in mm 2 16009 thja padsize 8 mm 2 per anode pin 0 10 20 30 40 50 60 70 80 90 100 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 v f C forward voltag e(v) 15974 f i Cf orward current ( ma ) red yellow 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 -40 -20 0 20 40 60 80 100 t amb C ambient temperature ( c) 18021 i f =70ma red v rel C relative luminous flux
www.vishay.com 6 document number 83212 rev. 1.6, 14-jan-05 tlwb / bg / r / tg / y8900 vishay semiconductors figure 11. specific luminous flux vs. forward current figure 12. relative luminous flux vs. forward current figure 13. relative intensity vs. wavelength 0.1 1.0 1 10 100 i f - forward current ( ma ) 18022 i - specific luninous flux spec red 0.01 0.1 1 10 1 10 100 i f - forward current ( ma ) 15978 i - relative luminous intensity vrel red 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 570 580 590 600 610 620 630 640 650 660 670 - wavelength ( nm ) 16007 i - relative luminous intensity vrel red figure 14. forward current vs. forward voltage figure 15. rel. luminous flux vs. ambient temperature figure 16. specific luminous flux vs. forward current 0 10 20 30 40 50 60 70 80 90 100 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 v f C forward voltag e(v) 15975 f i - forward current ( ma ) yellow 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 -40 -20 0 20 40 60 80 100 15977 i f =70ma yellow v rel C relative luminous flux t amb C ambient temperature ( c) 0.1 1.0 1 10 100 i f - forward current ( ma ) 15981 yellow i - specific luninous flux spec
tlwb / bg / r / tg / y8900 document number 83212 rev. 1.6, 14-jan-05 vishay semiconductors www.vishay.com 7 figure 17. relative luminous flux vs. forward current figure 18. relative intensity vs. wavelength figure 19. forward current vs. forward voltage v rel 0.01 0.1 1 10 1 10 100 i f - forward current ( ma ) 15979 yellow i - relative luminous intensity 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 540 550 560 570 580 590 600 610 620 630 640 - wavelength ( nm ) 16008 i - relative luminous intensity vrel yellow 0 10 20 30 40 50 60 70 80 90 100 2.5 3.0 3.5 4.0 4.5 5.0 5.5 v f - forward curren t(v) 16037 true green i f - forward current ( ma ) figure 20. rel. luminous flux vs. ambient temperature figure 21. specific luminous flux vs. forward current figure 22. relative luminous flux vs. forward current 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 16056 i f =50ma true green v rel C relative luminous flux t amb C ambient temperature ( c) -40 -20 0 20 40 60 80 100 0.1 1.0 1 10 100 i f - forward current ( ma ) 16038 i - specific luminous flux spec true green 0.01 0.10 1.00 10.00 1 10 100 i f - forward current ( ma ) 16039 true green vrel i - relative luminous intensity
www.vishay.com 8 document number 83212 rev. 1.6, 14-jan-05 tlwb / bg / r / tg / y8900 vishay semiconductors figure 23. relative intensity vs. wavelength figure 24. dominant wavelength vs. forward current figure 25. forward current vs. forward voltage 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 460 480 500 520 540 560 580 600 620 - wavelength ( nm ) 16068 i - relative luminous intensity vrel true green 521 523 525 527 529 531 533 535 537 539 541 i f - forward current ( ma ) 16301 dominant wavelength ( nm ) true green 01020304050 0 10 20 30 40 50 60 70 80 90 100 2.5 3.0 3.5 4.0 4.5 5.0 5.5 v f - forward voltag e(v) 16058 f i - forward current ( ma ) blue green figure 26. rel. luminous flux vs. ambient temperature figure 27. specific luminous flux vs. forward current figure 28. relative luminous flux vs. forward current 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 -40 -20 0 20 40 60 80 100 16061 i f =50ma blue green vrel - relative luminous flux t amb ? ambient temperature ( c) 0.1 1.0 1 10 100 16059 blue green i - specific luninous flux spec i f - forward current ( ma ) 0.01 0.10 1.00 10.00 1 10 100 16060 blue green i f - forward current ( ma ) i - relative luminous flux vrel
tlwb / bg / r / tg / y8900 document number 83212 rev. 1.6, 14-jan-05 vishay semiconductors www.vishay.com 9 figure 29. relative intensity vs. wavelength figure 30. dominant wavelength vs. forward current figure 31. forward current vs. forward voltage 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 420 440 460 480 500 520 540 560 580 600 16070 i f =50ma blue green i - relative luminous intensity vrel - wavelength ( nm ) 502 503 504 505 506 507 508 509 510 511 16300 blue green dominant wavelength ( nm ) 50 40 30 20 10 0 i f - forward current ( ma ) 0 10 20 30 40 50 60 70 80 90 100 2.5 3.0 3.5 4.0 4.5 5.0 5.5 v f - forward voltag e(v) 16040 blue truegreen i - forward current ( ma ) f figure 32.rel.luminousfluxvs.ambienttemperature figure 33.specificluminous fluxvs.forwardcurrent figure 34.relativeluminous fluxvs.forwardcurrent 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 16057 i f =50ma blue vrel - relative luminous flux t amb - ambient temperature ( c) -40 -20 0 20 40 60 80 100 0.1 1.0 1 10 100 i f - forward current ( ma ) 16041 blue i - specific luninous flux spec 0.01 0.10 1.00 10.00 1 10 100 i f - forward current ( ma ) 16042 blue vrel i - relative luminous intensity
www.vishay.com 10 document number 83212 rev. 1.6, 14-jan-05 tlwb / bg / r / tg / y8900 vishay semiconductors figure 35. relative intensity vs. wavelength figure 36. dominant wavelength vs. forward current 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 400 420 440 460 480 500 520 540 560 - w avelength ( nm ) 16069 i - relative luminous intensity vrel blue 16299 469 470 471 472 473 blue dominant wavelength ( nm ) 50 40 30 20 10 0 i f - forward current ( ma )
tlwb / bg / r / tg / y8900 document number 83212 rev. 1.6, 14-jan-05 vishay semiconductors www.vishay.com 11 package dimensions in mm 15984
www.vishay.com 12 document number 83212 rev. 1.6, 14-jan-05 tlwb / bg / r / tg / y8900 vishay semiconductors ozone depleting substances policy statement it is the policy of vishay semiconductor gmbh to 1. meet all present and future national and international statutory requirements. 2. regularly and continuously improve the performan ce of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. it is particular concern to control or eliminate rele ases of those substances in to the atmosphere which are known as ozone depleting substances (odss). the montreal protocol (1987) and its london amendments (1990) intend to severely restrict the use of odss and forbid their use within the next ten years. various national and international initiatives are pressing for an earlier ban on these substances. vishay semiconductor gmbh has been able to use its po licy of continuous improvements to eliminate the use of odss listed in the following documents. 1. annex a, b and list of transitional substances of the montreal protocol and the london amendments respectively 2. class i and ii ozone depleting substances in the clean air act amendments of 1990 by the environmental protection agency (epa) in the usa 3. council decision 88/540/eec and 91/690/eec annex a, b and c (transitional substances) respectively. vishay semiconductor gmbh can certify that our semi conductors are not manufactured with ozone depleting substances and do not co ntain such substances. we reserve the right to make changes to improve technical design and may do so without further notice. parameters can vary in different applications. all operating parameters must be validated for each customer application by the customer. should the buy er use vishay semiconductors products for any unintended or unauthorized application, the buyer sh all indemnify vishay semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. vishay semiconductor gmbh, p.o.b. 3535, d-74025 heilbronn, germany telephone: 49 (0)7131 67 2831, fax number: 49 (0)7131 67 2423


▲Up To Search▲   

 
Price & Availability of TLWY8900

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X